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Abstract
In this work a particle undergoing Brownian motion in a symmetric double
well is considered, in the limit of low frictional forces, and small temperature.
It is assumed that the particle fluctuations over equilibrium are governed by
a second-order diffusion equation, in which the drift velocity solves a HJY
equation, while the diffusion coefficient is determined from the stationary
condition. The excited state is constructed by imposing suitable boundary
conditions at the saddle point by means of an integral equation which is solved
to a first approximation by iteration, in the limit of high barrier. The result is
a complex eigenvalue for the relaxation of the fluctuation, which is interpreted
as a damped stochastic resonance. The relation to Kramer’s rate is discussed.

PACS number: 05.40.Fb

1. Introduction

This work aims at the calculation of the longest relaxation time for a probability density
fluctuation over the equilibrium state of a Brownian particle in a symmetric double well, in
the low-friction limit and small temperature. This problem had been considered previously
in [1, 2] by approximate methods, which proceed by expansion of the potential energy function
in powers of the inverse of the distance between the wells. By the approximate procedure it was
found that a canonical distribution of probability density satisfies the equilibrium condition
over the whole range of parameters, from high to low values of frictional coefficient β (for
that particular model potential).

In the present calculation we assume that the transition probability density distribution of
the system satisfies a second-order diffusion equation, and therefore the diffusion coefficient is
evaluated from the given drift velocity and the assumed canonical configurational equilibrium
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distribution. From this assumed equilibrium distribution the lowest nonvanishing eigenvalue
is obtained in the limit of small temperature by imposing suitable conditions at the boundary
between the two wells, following an integral equation method introduced by us in previous
work [3–6]. The boundary conditions at the saddle point correspond to an antisymmetric
eigenfunction. Consequently, this probability density function (pdf ) separates into two
equilibrium distributions with opposite signs in the limit of high barrier, and infinite separation.
The eigenvalue obtained in this way is the upper value resulting from the splitting of
the equilibrium one-well distribution into a symmetric and an antisymmetric probability
distribution function.

The expansion of the drift velocity was obtained in [7] in powers of β, for the singular
solution [8] to the Hamilton–Jacobi–Yasue (HJY) equation, which is independent of time
(see also [2]). The HJY is the low-temperature limit of the Hamilton–Jacobi–Yasue–Riccati
(HJYR) equation. This is the Hamilton–Jacobi equation of classical mechanics, supplemented
with two terms which take into account frictional effects (Yasue), and an average interaction
energy with the random field (Riccati). This term is temperature-dependent and vanishes
in the limit of zero temperature, thus yielding a sort of BKW (Brillouin–Kramers–Wentzel)
approximation to the problem. The interest of such an approximation is in reducing the order
of the equation from second or higher order, to the first.

It has been proved by the present author (see [7] and references therein) that the drift
velocity of a general stochastic process is bound to satisfy some kind of a HJYR equation.
Therefore, in order to compute the drift velocity of a one-dimensional system, we are left with
the problem of calculating the solutions to a first-order partial differential equation in two
variables, coordinate and time. The solution is here calculated for that value of the energy E,
measured from the well bottom, which makes the frictionless term of the expansion singular
with respect to t0 and E, in the sense that both derivatives of the action with respect to E and
t0 vanish. This solution has the property that the momentum in the well bottom vanishes. It is
proved, using the results of [2], that this property can be extended under general hypothesis
to some finite range of values of β and consequently to the whole region where the β-series
applies.

The choice of the solution to the HJY equation to describe the diffusion process is,
it has been shown, arbitrary, in the sense that the two-time transition probability density,
from some initial configuration onwards, is independent of this choice [9]. However, the
asymptotic equation for large time will be strongly dependent upon this choice, and therefore
the asymptotic description of fluctuations over the equilibrium state will be different, according
to different choices. Consequently, boundary conditions must be chosen in conformity with
the drift velocity [9]. If this requirement is fulfilled, the asymptotic equation has the meaning
explained in [9].

It has been shown there that the diffusion operator obtained by using the singular solution
is free from initial data (for appropriate choice of boundary conditions); consequently, the
asymptotic equation properly describes the evolution of fluctuations over the equilibrium
state [7], in the asymptotic regime [7, 9]. It manifests the fact that, being independent of
initial parameters, the asymptotic equation is most suitable to describe statistical ensembles
of randomly distributed particles.

This paper is organized as follows. Section 2 derives the parameters of the diffusion
equation of second order which governs the evolution of the physical process. Section 3
shows how the stationary equilibrium distribution function can be modified so as to satisfy
the required conditions at the boundary. Section 4 shows that the eigenvalue of the pdf
modified through boundary conditions is independent of the relevant integration parameter of
the associated integral equation. This allows us (see section 6) to obtain the best choice of
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that parameter in order to optimize the convergence of the expanded solution of the integral
equation. Section 5 shows how an expression for the eigenvalue k is obtained from boundary
conditions applied to the integral equation for the pdf. Section 6 shows how to select the
leading terms of the eigenvalue k in the limit of low temperature, and evaluates this result, in
terms of the zeroth-order action ϕ(0). The nontrivial statement is proved which warrants that
the action ϕ(qm), where ϕ(q) is a singular solution to the HJY equation, vanishes at a minimum
point of the potential energy, from which the energy is computed. This allows us to obtain
an explicit expression for the complex eigenvalue k, valid in the limit of small temperature,
which is the main result of this paper. Section 7 compares this result with the Kramer rate,
which shows a different temperature dependence in the prefactor, and moreover comparison
is made with results obtained by the flux-over-population method, which are similar to the
present ones. These calculations are reproduced in detail in the appendix.

2. Solving the equations of motion for low values of frictional coefficient

The HJY equation for a classical Newtonian particle evolving in a potential U(q), with energy
E, is written [7, 10]

1

2m

(
∂ϕ

∂q

)2

+ U(q) + βϕ(q) = E (2.1)

where q denotes the spatial coordinate, m the mass, β the frictional coefficient and ϕ(q, E) is
the action. The energy E has been split from the additional constant in ϕ(q) because it remains
finite in equation (2.1) when β → 0. It is the energy evaluated at those points where βϕ(q)
vanishes.

Since it is assumed that ϕ(q) has no poles as β → 0, equation (2.1) can be solved by a
power expansion in β. By the change of variables

∂ϕ

∂q
= 1

z
(2.2)

the two leading terms of the expansion are [7]

z0(q) + βz1(q) = ±1√
2m(E − U(q))

+
β

2(E − U(q))3/2

∫ q

dη(E − U(η))1/2. (2.3)

For β = 0, equation (2.3) represents in implicit form the law of the motion, since it yields
the momentum p = mq̇ as a function of coordinate q, for a fixed value of energy E. For small
values of β, it expands around that trajectory by adding the small corrections due to frictional
forces.

For particular values of initial conditions (here represented by E and the corresponding
coordinate t0, see equations (6.4)–(6.4′′)) the first term of equation (2.3) yields a singular
solution, which has a characteristic curve in common with every integral surface.

By taking the inverse of equation (2.3) it is obtained

1

m
p(q) = 1

mz0(q)
− β

m

z1(q)

z0(q)2
+ O(β2)

= ±
√

2

m
(E − U(q)) − β

(E − U(q))1/2

∫ q

dη(E − U(η))1/2 + O(β2). (2.4)

The second term of this expansion yields precisely that modification of the first one which
results from the variation of energy due to dissipation to first order in β. Higher corrections
may be evaluated in the same way. Consequently, the solution modified by addition of these
frictional terms will reproduce the whole damped trajectory.
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The diffusion equation follows from the choice of a particular p(q)[
∂2

∂q2
D(q) − 1

m

∂

∂q
p(q)

]
P(q, t) = ∂P

∂t
(2.5)

for the two-time transition probability density. Equation (2.5) is an asymptotic equation, valid
in the limit t − t0 → ∞, where t0 is the initial time of preparation [7, 9]. Here we assume,
besides the validity of (2.5), that the stationary equilibrium distribution of probability density is

Pe(q) ∝ exp

{
−U(q)

T

}
(2.6)

where T is the temperature. This yields

D(q) = eU(q)/T

∫ q

dη
1

m
p(η) e−U(η)/T ∼= − 1

m

[
Tp(q)

U ′(q)
+

T 2p′(q)

U ′(q)2

]
(2.7)

where the prime denotes derivatives over the spatial coordinates.
The calculation of the diffusion coefficient from the equations of motion has been carried

out in [2] according to our procedure [11], by splitting the velocity into a drift plus a diffusive
component. That calculation was only applicable to systems with high or moderate values of
frictional coefficient. A more extended calculation including small frictional forces was made
in [1], for a similar model potential, to first order in the parameters of nonlinearity only, and
the results were found consistent with equation (2.7).

The separation of the velocity into two components is in principle arbitrary, as explained in
previous [2, 7, 9], except that the drift must satisfy a Hamilton–Jacobi–Yasue–Riccati equation,
in order to eliminate the memory term in the averaged diffusion equation. The choice of the
singular solution of the above-mentioned equation is motivated by the following arguments:

(i) the singular solution is the natural extension of the usual drift term which is admitted in
the most common forms of diffusion equations. See, for this purpose, [2], section 1, 3.

(ii) The singular solution allows the asymptotic form of the diffusion operator to retain a
physical significance, as a generator of the 2-point transition probability density in the
asymptotic state, for appropriate initial conditions. See, for example, [9], section 5.

(iii) Supposing the supersystem composed by particle plus bath to be in a stationary time-
invariant state (which requires that the eigenvalue of the corresponding phase-space
density is zero), then the phase average of any function of particle variables is time-
independent. This requires that the diffusion operator is independent of time. This meets
also the requirements of point (ii).

The choice of the singular solution of the HJYR equation to represent the drift is not
invalidated by the fact that this function of position is often complex-valued. In fact the
total velocity, given by the sum of two components, is generally real-valued, at least in the
asymptotic regime, because the force is real. It follows that the two-point transition pdf is
real-valued. See for this purpose the explicit calculations in [9].

The use of a second-order diffusion operator should not introduce any additional constraint
on the process under study, since it has been proved in [2] that higher-order operators are not
uniquely defined.

We stress the fact that, although the resulting equations strongly resemble the quantum-
mechanical evolution equations for the two-point transition probability density, the stochastic
process under study is purely classical. The low-temperature limit has the advantage of making
the calculations more expedient, and of making the comparison easier with earlier results of
numerous authors [16]. This comparison shows that the present equations lead to results in
agreement with those obtained by conventional methods based upon classical assumptions.
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The main difference with a quantum-mechanical diffusion process is, in my opinion, the
strong dependence of the diffusion coefficient (2.7) upon the potential energy function, which
is necessary in order that the equilibrium pdf should be a projected canonical distribution,
given by equation (2.6).

3. Satisfying boundary conditions through an integral equation

The solution to equation (2.5) given by equation (2.6) generates new solutions to the eigenvalue
problem through the integral equation [4]

Pk(q) = Pe(q) − k

∫ q

a

dη
Pe(q)

D(η)Pe(η)

∫ η

b

dς Pk(ς) (3.1)

which satisfy
∂Pk

∂t
= −kPk(q, t). (3.2)

The constants a and b are chosen so as to satisfy the proper boundary conditions at the points
q = a and q = b. Varying the constant a merely changes normalization, while b is related to
the derivative at the point q = a. The value of the function Pk (q) at any point q = c allows us
to transform equation (3.1) into an equation for the eigenvalue k. Putting c = q̂ we find

Pk(q̂) = Pe(q̂) − k

∫ q̂

a

dη
Pe(q̂)

D(η)Pe(η)

∫ η

b

dς Pk(ς) (3.3)

from which k may be evaluated as a function of boundary conditions at the point q̂. Putting
b = − ∞ implies that the flux of particles vanishes for q → − ∞.

4. The effect of the variation of the constant a on the eigenvalue

Equation (3.3) may be expanded yielding the identity

Pk(q̂) = Pe(q̂)

[
1 − k

∫ q̂

a

dη

D(η)Pe(η)

∫ η

−∞
dς Pe(ς) + k2

∫ q̂

a

dη

D(η)Pe(η)

∫ η

−∞
dς Pe(ς)

×
∫ ς

a

dη1

D(η1)Pe(η1)

∫ η1

−∞
dς1 Pe(ς1) − · · ·

]

= Pe(q̂)

[
1 − k

∫ q̂

d

dη

D(η)Pe(η)

∫ η

−∞
dς Pe(ς) + k2

∫ q̂

d

dη

D(η)Pe(η)

×
∫ η

−∞
dς Pe(ς)

∫ ς

d

dη1

D(η1)Pe(η1)

∫ η1

−∞
dς1 Pe(ς1) − · · ·

]

×
[

1 − k

∫ d

a

dη

D(η)Pe(η)

∫ η

−∞
dς Pk(ς)

]
. (4.1)

Equating the above expression to zero, and putting q̂ �= d, it follows that

Pe(q̂)

[
1 − k

∫ q̂

a

dη

D(η)Pe(η)

∫ η

−∞
dς Pk,a(ς)

]

= Pe(q̂)

[
1 − k

∫ q̂

d

dη

D(η)Pe(η)

∫ η

−∞
dς Pk,d(ς)

]
= 0 (4.2)

where the additional subscript in the distribution function Pk denotes the lower limit of the
integral in the integral equation (3.1), which defines Pk (q).

Consequently, by expanding the two alternative expressions (4.2), it follows that the
difference between the two first-order approximants obtained by substituting Pe either for Pk,a

or Pk,d, is removed into the higher-order terms.
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5. Evaluation of the eigenvalue k

It is supposed from now on that U(q) − E � 0 in the whole interval of definition in which we
are interested. Then from equations (2.3), (2.6), (4.2) it is obtained, using (2.7) in the small
temperature limit,

k−1 = −m

∫ q̂

d

dy
U ′(y)

Tp(y)
exp(U(y)/T )

∫ y

−∞
dz exp(−U(z)/T )

= ±i

√
m

2π

∫ +∞

−∞
dx

∫ q̂

d

dy
U ′(y)

T
exp((U(y) − E)(1 − T x2)/T )

×
∫ y

−∞
dz exp(−(U(z) − E)/T )

+
mβ√

π

∫ +∞

−∞
dx

∫ q̂

d

dy
U ′(y)

T
x2 exp((U(y) − E)(1 − T x2)/T )

×
∫ y

d

dz (U(z) − E)1/2
∫ y

−∞
dw exp(−(U(w) − E)/T )

= ±i

√
m

2π

∫ +∞

−∞
dx

exp((U(q̂) − E)(1 − T x2)/T )

1 − T x2

∫ q̂

−∞
dz exp(−(U(z) − E)/T )

∓i

√
m

2π

∫ +∞

−∞
dx

exp((U(d) − E)(1 − T x2)/T )

1 − T x2

∫ d

−∞
dz exp(−(U(z) − E)/T )

∓ i

√
m

2π

∫ +∞

−∞
dx

∫ q̂

d

dy
exp(−(U(y) − E)x2)

1 − T x2

+
mβ√

π

∫ +∞

−∞
dx

x2 exp((U(q̂) − E)(1 − T x2)/T )

1 − T x2

×
∫ q̂

d

dz(U(z) − E)1/2
∫ q̂

−∞
dw exp(−(U(w) − E)/T ) − mβ√

π

∫ +∞

−∞
dx

×
∫ q̂

d

dy
x2 exp((U(y) − E)(1 − T x2)/T )

1 − T x2
(U(y) − E)1/2

×
∫ y

−∞
dw exp(−(U(w) − E)/T )

− mβ√
π

∫ +∞

−∞
dx

∫ q̂

d

dy
x2 exp(−(U(y) − E)x2)

1 − T x2

∫ y

d

dz(U(z) − E)1/2. (5.1)

In the above equation we interpret the integral over dx as the principal part.

6. Symmetric double well

Consider now a symmetric double well of any shape whatsoever with boundaries where U(q)
goes to infinity. Take as q = q̂ the coordinate of the saddle point. Then the boundary condition
(4.2) defines that probability distribution function which is antisymmetric around the midpoint
of coordinate q̂. From equation (5.1) it is clear that

k−1 ∼= ± i

√
m

2π

∫ +∞

−∞
dx

exp((U(q̂) − E)(1 − T x2)/T )

1 − T x2

∫ q̂

−∞
dz exp(−(U(z) − E)/T )

+
mβ√

π

∫ +∞

−∞
dx

x2

1 − T x2
exp((U(q̂) − E)(1 − T x2)/T )

∫ q̂

d

dz(U(z) − E)1/2
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×
∫ q̂

−∞
dw exp(−(U(w) − E)/T ) − mβ√

π

∫ +∞

−∞
dx

x2

1 − T x2

×
∫ q̂

d

dy exp((U(y) − E)(1 − T x2)/T )(U(y) − E)1/2

×
∫ y

−∞
dw exp(−(U(w) − E)/T ) (6.1)

the omitted terms being O(exp(−U(q̂)/T )) with respect to those which are retained. Now,
if U(y) < U(q̂) for d � y < q̂, it can also be ascertained that the last term in equation (6.1)
can be neglected in the limit of small temperature, with respect to the remaining two terms.

Proof.∣∣∣∣
∫ q̂

d

dy
exp((U(y) − E)(1 − T x2)/T )

1 − T x2
(U(y) − E)1/2

∫ y

−∞
dw exp(−(U(w) − E)/T )

∣∣∣∣
<

∣∣∣∣exp((U(q̂) − E)(1 − T x2)/T )

1 − T x2

×
∫ q̂

d

dy exp((U(y) − U(q̂))(1 − T x2)/T )(U(y) − E)1/2

×
∫ q̂

−∞
dw exp(−(U(w) − E)/T )

∣∣∣∣ (6.2)

where the first integral on the rhs is infinitesimal with T → 0 and |x| < 1√
T

. By comparing this
result with the second term on the rhs of equation (6.1), it follows that the expression above
can be safely neglected for T sufficiently small and |x| < 1√

T
. Consequently, also the integral

over dx of the same expression can be neglected as T → 0, because the major contribution to
the integral over dx comes from the region where |x| < 1√

T
, for both expressions in the second

row and in the third row of the rhs of equation (6.1).
In the case that U(y) − U(q̂) is a smooth function which can be conveniently expanded

around q̂ in powers of y − q̂, the assertion follows by analytical calculation. Thus after
collecting terms it is obtained

k−1 ∼= ± i

√
m

2

∫ q̂

−∞
dz exp(−(U(z) − E)/T )

exp((U(q̂) − E)/T )√
U(q̂) − E

×
[

1 − β

2

ϕ(0)(q̂) − ϕ(0)(d)

U(q̂) − E

]
(6.3)

where

ϕ(0)(q) = ±
√

2m

∫ q

dη
√

E − U(η) (6.3′)

is the coordinate part of the action evaluated in the limit of zero frictional forces. The
expression which has been calculated is exact to leading order in the low-temperature limit.

There remain to be defined the values of the constants E and d which appear in the
equations (6.3), (6.3′). The two following equations will make sure that f (q, t − t0, E) is a
singular solution with respect to both parameters E and t0:

∂f

∂t0
= E exp(−β(t − t0)) = 0 (6.4)

∂f

∂E
= ±

√
m

2

∫ q

d

dη√
E − U(η)

+
exp(−β(t − t0)) − 1

β
+ O(β) = 0 (6.4′)
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or

t − t0 = − 1

β
ln

[
1 ∓ β

√
m

2

∫ q

d

dη√
E − U(η)

]
+ O(β). (6.4′′)

In the above equations f (q, t − t0, E) is the action:

f (q, t − t0, E) = ϕ(q,E) − E
1 − exp(−β(t − t0))

β
. (6.5)

Therefore, making E → 0, it follows that d → qm also (see equations (6.6), (6.7)).
Consequently, provided that U(q) is smooth around qm endowed with nonvanishing second
derivative, and β sufficiently small, t − t0 → ∓i∞. This extends to general unidimensional
systems the result proved in [7] for linear systems with vanishing friction.

We now prove the assertion made above.
Fixing the zero of the energy scale in the well bottom with coordinate qm yields

U(qm) = 0 (6.6)

which, together with (6.4), bears to the consequence that ϕ(q, 0) is a solution of the coordinate
type [2] at the point qm, because

p′(qm) = ∓
√

m

2

U ′(qm)√−U(qm)
+ O(β) �= −mβ. (6.7)

This inequality results, provided the first term on the rhs is nonzero as a limiting value for
q → qm. Property (6.7) obviously holds in the whole domain of convergence of the series.
It follows that p(qm) = 0, and consequently, ϕ(qm) = 0 by (2.1), (6.4), (6.6). Therefore we
must put d = qm in equation (5.1), as the lower limit of the integral over dz. The integral over
dy in the same equation has been proved to a large extent to be insensitive its lower limit, but
it can be proved that the best choice is d ∼= qm, because it makes Pk(q) = Pe(q) at the point
where this function attains its maximum value, thus optimizing the integral of normalization
in the first iteration. It follows

k ∼= ∓i

√
2U(q̂)

m
exp(−U(q̂)/T )

1 + βϕ(0)(q̂)/2U(q̂)∫ q̂

−∞ dz exp(−U(z)/T )
. (6.8)

Equation (6.8) yields the eigenvalue of the diffusion equation (2.5), (2.7), belonging to an
eigenfunction of the same equation which describes a fluctuation over the equilibrium state
(2.6) [7, 9]. The first term represents a sharp resonance frequency which however describes the
oscillations of the probability density, not of the particle itself, which undergoes a stochastic
motion. It is expected therefore that the frequency of jumps would match the theoretical mean
value after averaging over a large number of jumps, or over an ensemble of many particles non-
interacting between them. The second term which is linear in β represents the rate at which
the given fluctuation over the stationary equilibrium state fades while oscillating between the
two wells.

7. Comments

7.1. Prior results

In [1] the same problem was treated for a particular model potential, where the drift and
diffusion terms were evaluated up to first order in the parameter of nonlinearity, thus obtaining
the result

k = 1

π

(
19

18
β − 5

3
iω0

)
exp(−U(q̂)/T ) (7.1)
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where the transmission factor is seen to depend uniquely upon the parameters β and the
frequency ω0 in the well bottom. The present result considerably modifies the previous one,
by introducing the action ϕ(0)(q̂) which, to a quadratic approximation, is equal to ± i

2π
I (q̂),

where I (q̂) is the action as defined, for instance, in [12]. The result obtained in [12] for the
rate, which is however a different problem [13], may be written in the present notation

k(Kr) ∼= ∓ i

2
βϕ(0)(q̂)

ω0

T
exp(−U(q̂)/T ) (7.2)

where the superscript refers to Kramer’s rate. Thus, evaluating the integral in (6.8) gives the
result

Re(k)∼= k(Kr)

√
T

4πU(q̂)
. (7.3)

Kramer’s rate may be evaluated in the present context by the flux-over-population method
[16], by assuming that it is equally applicable to systems in the underdamped regime, provided
the stationary solution of the diffusion equation, which carries a constant flux, is known. The
result is similar in form to equation (5.1), except for boundary conditions, which, generally
speaking, only affect the result by a numerical factor. It is remarkable that essentially the same
result is obtained by making use of Adelman and Garrison’s equation in the asymptotic form
for large time ([17], equation (3.3), see also [9]): in order to compare the results the phases
of the trigonometric functions must increase monotonically with time (see the appendix).
Consequently, we suggest that the different form of the pre-exponential factors (transmission
coefficients) obtained through the energy-diffusion-limited rate theory, is due to the assumption
that the pdf depends only upon the energy, or the action, being independent of the angle. This
neglects the asymmetry of the pdf about the well bottom, which is caused by depletion
of particles in the escaping region neighbouring the saddle point. This depletion is more
pronounced at low temperature and thus causes the decrease in the transmission factor
(equation (7.3)).

7.2. Quantum effects

The low-temperature limit is here understood in a purely classical fashion. Quantum effects
would produce discretization of the levels in the potential well around qm, due to the
semiclassical condition that the action I(q) should be an integer multiple of 2πh̄, the quantum
of action. This would produce a departure from the stationary equilibrium distribution (2.6).
It is therefore expected that quantum effects would become easily detectable as soon as
discretization of the levels was important near the barrier top, that is as the condition

I (q̂) 	 2πh̄ (7.4)

breaks down. However, since it has been assumed throughout this work that T 
 U(q̂), the
validity of (2.6) requires the more stringent condition

I (q̂)

2π
	 T

ω0
	 h̄ (7.5)

where 2πT /ω0 is the action of a level of energy T, having assumed that U(q) is smooth around
qm, and ω0 = √

U ′′(qm)/m.
In the framework of the interpretation of quantum mechanics as a (classical) diffusion

process [14, 15], inequality (7.5) also acquires the following significance: the absolute value
of the diffusion coefficient of the quantum diffusion process should be negligible versus the
absolute value of the diffusion coefficient, given by equation (2.7), of the diffusive Brownian
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stochastic process of a particle in a bath at temperature T. In the proximity of the barrier top
this requirement yields in the place of (7.5):

T

ω(q̂)
	 h̄ (7.6)

where use has been made of equation (2.7), and

ω(q̂) =
√

−U ′′(q̂)

m
. (7.7)

The equality in equation (7.6) defines the quantum crossover temperature in the low friction
limit [16].

7.3. Interpretation

According to our interpretation of the asymptotic diffusion operator [7, 9, 16], the associated
propagator represents the transition probability of a pseudo-Markov process whose initial
conditions in the remote past are determined from the data at the present instant. It is therefore
possible to guess the evolution of a fluctuation over the equilibrium state which is monitored
by these data. The eigenvalue that has been computed here yields the time evolution of such
a fluctuation, which is shaped so as to make the decaying law purely exponential. Since the
diffusion operator conserves the norm, this must vanish at all times. There follows that the
physical solution for the normalized probability density must be the linear combination of
the equilibrium state probability density, with norm equal to 1, and the given fluctuation.

The possibility of oscillations is a consequence of the fact that the eigenvalue, and therefore
the probability density function is complex. The imaginary part of this function determines
the subsequent evolution although it is not physically observable [1], like the imaginary part
of the voltage in a resonating circuit. In this sense the system has a memory, because its time
evolution is not determined uniquely from the real, observable part of its probability density
function, but also the imaginary part, which depends upon the evolution in the past, and initial
preparation must be taken into account.

The author of this paper, together with Battezzati [1, 2], is confident of having contributed
to building up a new approach to the evaluation of the relaxation times of diffusive systems
based on the calculation of the lowest eigenvalue of the configurational diffusion equation.
This method is equally valuable in the region of small values of frictional coefficient, and in
the regions of high or moderate values, and consequently is suitable to explore the turnover
region between different regimes. The technique that has been used here, which is based
upon an integral equation that allows us to satisfy the prescribed boundary conditions, leads
in the first iterate to the evaluation of the mean first-passage time, and is also tightly related
to the flux-over-population method. The main interesting feature of this approach is that of
using exclusively the configurational diffusive properties of the system, while all the previous
approaches were based, as far as we know, on a higher-dimensional diffusion process in phase
space including also the velocities, which are important in the low friction limit. The price
to pay for this simplification is the extension of the coefficients of evolution equation to the
complex domain.
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Appendix. The rate for the truncated harmonic oscillator, by the
flux-over-population method

The asymptotic expression for large time of the flux of particles, in Adelman and Garrison’s
formulation [9, 17] of a diffusion process for a particle in a quadratic potential, is

j = − ω2
0q sin ωt

1
2β sin ωt + ω cos ωt

P (q, t) − T

m

sin ωt
1
2β sin ωt + ω cos ωt

∂

∂q
P (q, t) (A1)

from which it is deduced, with the boundary condition P(q̂, t) = 0 identical with respect
to t,

Pj (y, t) = −j

1
2β sin ωt + ω cos ωt

sin ωt

m

T

∫ y

q̂

dq exp
(
mω2

0(q
2 − y2)/2T

)
(A2)

where ω =
√

ω2
0 − 1

4β2. The fractional slow decrease of Pj (y, t) is therefore calculated from
(see [16])

1

Pj

dPj

dt
= − j∫ q̂

−∞ dy Pj (y, t)
= −k(t) (A3)

Pj (y, t)(t0) = Pj (y, t) exp

(
−

∫ t

t0

k(τ ) dτ

)
. (A4)

Therefore

k(t) = T

m

sin ωt(
1
2β sin ωt + ω cos ωt

) ∫ q̂

−∞ dy
∫ q̂

y
dq exp

(
mω2

0(q
2 − y2)/2T

) . (A5)

We now show that, in the limit of vanishing temperature, k(t) → k, a constant number.
On putting

β

2ω0
= sin δ

ω

ω0
= cos δ (A6)

there follows ∫ t

t0

sin ωτ dτ
1
2β sin ωτ + ω cos ωτ

= − 1

ω2
0

ln

[
cos(ωt − δ)

cos(ωt0 − δ)

]
+

β

2ω2
0

(t − t0). (A7)

Then we compute, to leading order in T∫ q̂

−∞
dq exp

(
mω2

0q
2/2T

) ∫ q

−∞
dy exp

(−mω2
0y

2/2T
)

∼=
∫ q̂

−∞
dq exp

(
mω2

0q̂
2/2T + mω2

0q̂(q − q̂)/T
)√2πT

mω2
0

=
√

2πT

mω2
0

T

mω2
0q̂

exp
(
mω2

0q̂
2/2T

)
. (A8)

Therefore∫ t

t0

k(τ ) dτ ∼= −
√

mω2
0q

2

2πT

[
ln cos(ωt − δ) − ln cos(ωt0 − δ) − 1

2
β(t − t0)

]
× exp

(−mω2
0q̂

2/2T
)
. (A9)

Next the limit for vanishing temperature of this expression is evaluated. Writing

cos(ωt − δ) = |cos(ωt − δ)| exp(in(t)π) (A10)
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where n(t) is a nondecreasing function of t which assumes integer values only, there follows

lim
{T →0}

[|cos(ωt − δ)| exp(in(t)π)] exp
(−mω2

0q̂
2/2T

) = 1 × exp(in(t)) exp
(−mω2

0q̂
2/2T π

)
(A11)

everywhere except for isolated points where ωt = (
n + 1

2

)
π + δ.

As T → 0 the exponent on the rhs of the above equation can be conveniently approximated
by a smooth function

ω(t − t0) exp
(−mω2

0q̂
2/2T

) ≈ n(t) exp
(−mω2

0q̂
2/2T

)
π.

It follows∫ t

t0

k(τ ) dτ ∼= −
√

mω2
0q̂

2

2πT

(
iω − 1

2
β

)
(t − t0) exp

(−mω2
0q̂

2/2T
) = k(t − t0) (A12)

which is identical with equation (6.8), upper sign (the lower sign can be obtained by reversing
the phases).

We clarify now the connection with the procedure adopted in this paper. From Hamilton’s
principal function for the harmonic oscillator [18]:

f (q, q0, t) = 1

2
m

[
q2

(
ω cot ωt − 1

2
β

)
+ q2

0 e−βt

(
ω cot ωt +

1

2
β

)
− 2ωqq0

sin ωt
e− 1

2 βt

]
(A13)

the drift velocity (A1) is readily obtained from the stationary condition over q0, and subsequent
elimination of this parameter. The result is

f (q, q0(q, t), t) = −1

2
mq2 ω2

0 sin ωt

ω cos ωt + 1
2β sin ωt

. (A14)

Then the diffusion coefficient follows from equation (2.7).
Consequently, we substitute into (A5) t = τ + iσ , then making σ → ∓i∞ for stationarity

in (A14), it is obtained

k(τ ∓ i∞) = 1(
1
2β ± iω

) ∫ q̂

−∞ dq
∫ q

−∞ dy exp
(
mω2

0(q
2 − y2)/2T

) (A15)

from which, using (A6) and (A8), equation (A12) may be calculated.

References

[1] Battezzati M 1999 J. Chem. Phys. 111 9932
[2] Battezzati M 2003 J. Phys. A: Math. Gen. 36 3725
[3] Battezzati M and Perico A 1981 J. Chem. Phys. 75 886
[4] Perico A and Battezzati M 1981 J. Chem. Phys. 75 4430
[5] Battezzati M and Magnasco V 2001 J. Chem. Phys. 114 3398
[6] Battezzati M and Magnasco V 2002 J. Phys. A: Math. Gen. 35 5653
[7] Battezzati M 1996 Trends Chem. Phys. 4 167
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